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Introduction 

Telecommunications and Networking is a vast industry from 
both a business and technology perspective. This global 
market is growing at 10-15% annually and hit over $500 billion 
in 1990s. Equally impressive is the rapid innovations and 
diversity of the technology used to allow people to 
communicate with voice, data, image and video across the 
globe. FPGAs are one of those enabling technologies. 

The evolutionary nature of developing telecommunications 
standards as well as the diminishing product cycle times 
demand high speed/high capacity devices that can be 
designed in weeks. These are the attributes that have 
catapulted FPGAs to the forefront of the telecom engineer's 
toolbox. Actel offers four distinct device families targeted at 
different design needs. The ACT 1 family offers low cost 
integration up to 2,000 gates. ACT 2 and 1200XL families 
provide best value high capacity up to 8,000 gates and 50 MHz. 
ACT 3 offers high capacity and high speed allowing telecom 
applications up to 10,000 gates to operate beyond 75MHz. 

This FPGA Applications Guide uses the ACT 3 devices to show 
three specific Telecommunications and Networking 
applications. Each design provides detailed information on the 
application and the design methodology referencing many 
diagrams. A disk is appended at the end of the Applications 
Guide which contains all the design files needed to use the files 
in your next design. Please reference these files to get a clear 
and concise view of the schematics. The first two designs were 
captured using the Viewlogic schematic editor. All the library 
elements used in the design are included on the disk so you do 
not need to have a complete Actel system to use the designs. 
The third design was written in Verilog HDL and the complete 
source file is included on the disk. 



The first application describes how to implement the 
100Base-X 100 Mbit/ s Ethernet Standard in an Actel FPGA. 
There is an in-depth discussion of the sub-layer functions 
referencing the design files so that any required changes to 
meet your needs can be easily accomplished. 

The second application presented is a high speed 
Asynchronous Transfer Mode (ATM) Switch Fabric. ATM is a 
relatively new innovation and used to optimally process 
packets at higher rates. The Actel multiplexer based 
architecture is ideally suited for ATM applications. Again, full 
design details are included to allow you to modify this design 
for your needs. 

The third application describes the design of a Cyclic 
Redundancy Check (CRC) for the IEEE standard 802.3 Local 
Area Network interface. CRC offers a way to detect small 
changes in blocks of data ensuring integrity during transfers. 
This design is implemented in Verilog HDL. Schematics were 
generated to show the modules utilized in the design. 

For further technical information, contact Actel using your 
favorite means of communications: 

Technical Hotline 800 262-1060 
FAX 408 739-1540 
E-mail tech@actel.com 



Using Actel FPGAs to implement 
the 100 Mbit/s Ethernet Standard 

One of the more recent entrants into the high-speed 
networking standards battle is 100Base-X-Ethernet operating 
at 100 Mbit/s. This standard is supported by the Fast Ethernet 
Alliance and sponsored by several key networking companies 
such as Intel, National Semiconductor, Sun Microsystems, and 
3Com. This proposed standard involves many of the types of 
digital logic functions facing high-speed network designers 
and, as will be shown in this application note, can be readily 
implemented using Actel FPGA devices. 

The emerging 100 Mbit Ethernet market is expected to 
mushroom as network performance requirements continue to 
grow. Network users are expected to have almost doubled 
between 1991 and 1994, and networks will need to provide 
these new users with just as much (if not more) bandwidth. A 
high-speed Ethernet network could solve the bandwidth 
problems for many classes of users while maintaining 
compatibility with current equipment and software. 



Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard 

7 OOBase-X Network Standards 
The 100Base-X proposal uses two established networking 
standards to support the 100 Mbit data rate required to 
implement the tenfold increase in the 10 Mbit rate of the 
current Ethernet standard. The 100Base-X standard keeps the 
Media Access Control (MAC) layer the same as the current 
Ethernet standard, but it raises the data rate to 100 Mbit/s. 
Since the MAC layer was defined independently of 
performance level, this increase can be accomplished relatively 
easily, and the well-proven behavioral dynamics of the 
Ethernet MAC can be retained. The only change required is to 
reduce the physical network span to 1/10 of the 10 Mbit/s 
distance, resulting in a span of about 250 meters. 

This reduced span fits well within current structured wiring 
methodologies. Building-floor wiring in modern installations 
of Ethernet, such as 10Base-T, are organized as physical stars 
with a centralized wiring closet and cable runs of less than 
100 meters. For LANs, this results in a hub-station architecture 
with interconnections of less than 100 meters. 

At the physical layer, 100Base-X leverages off the proven FDDI 
standard for 100 Mbit/s communications using a full-duplex 
125 Mbit/s Physical Media-Dependent (PMD) sublayer. This 
supports fiber optic, shielded twisted-pair (STP) and 
unshielded twisted-pair (UTP) wiring. Combining the MAC 
layer of Ethernet to the PMD layer of FDDI requires a 
convergence sublayer (CS) between them. Using the CS, 
100Base-X maps the PMD's constant signaling system to the 
packet-oriented half-duplex system imposed by the Ethernet 
MAC. 



1 OOBase-X Network Standards 

Convergence Sublayer Interfaces 

The MAC transmits data to the convergence sublayer in the 
form of 4-bit words (Figure 1). This data is then encoded into 5- 
bit groups, serialized, and transmitted by the CS to the PMD 
sublayer as the transmitPMD signal. 

Received data is sent from the PMD to the CS as the 
receivePMD signal and is synchronized with the 125 MHz 
clock. Note that the PMD also generates signalDetect when 
data is detected on the line. The CS decodes the serial data, 
converting the input 5-bit code groups into 4-bit hex characters 
and sends it to the MAC as the receiveMAC signal. Note that 
the PMD extracts the clock from the serial bit stream input. The 
125 MHz frequency is recovered from the input data stream by 
the PMD clock circuits in the CS. In addition, receiveError is 
generated by the CS to indicate to the MAC that an error has 
occurred during reception. The carriersense signal is provided 
to the MAC to indicate that the line is active. The 
collisionDetect signal notifies the MAC if a collision has 
occurred. 

This application note will show you how to use Actel FPGAs to 
develop a complete convergence sublayer. It will subdivide the 
CS into its functional divisions and will show you how each 
can be implemented using Actel ACT 3 FPGAs. 
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Figure 1.  Convergence Sublayer lntelfaces 
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Convergence Sublayer Functions 

Convergence Sublayer Functions 
Figure 2 shows the basic dataflow in the convergence sub- 
layer. The CS receives transmit data from the MAC as 4-bit 
words designated transmitMAC. These 4-bit words are 
encoded into 5-bit symbols (designated TxSYM) that are 
shifted out to the PMD at the 125 MHz clock rate. 

Figure 2. Data Flow in Convergence Sublayer 
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Received data at a 125 Mbit/s rate is sent from the PMD to the 
CS as the receivePMD signal. The CS formats input data to 
produce 5-bit symbol groups. Detection of the two-symbol 
sequence, J and K, marks the beginning of a packet and starts 
the synchronization of the input data stream. The 5-bit groups 
are then decoded by the 5B4B decoder and sent to the MAC as 
a stream of 4-bit words until the packet's end is detected by the 
reception of the end-of-packet delimiter characters, T and R. 

The 4B5B encoding/decoding method, which is a subset of the 
standard FDDI 4B5B encoding method, employs 5-bits to 
encode/decode both 16 data (hex) characters and the signaling 
symbols required to indicate the start and end of the data 
packet. In addition to the 16 valid 4-bit-binary code groups 
shown in the Table 1, there are five special control signals used 
to indicate start of packet (J followed by K), end of packet (T 
followed by R), and idle (I). A number of other 5-bit 
combinations are designated as invalid and represent channel 
errors or repeater collision artifacts. Thus, the physical line 
idles until the start of a data packet is indicated by a J symbol 
followed by a K. Data symbols then follow with the end of data 
being indicated by a T symbol followed by an R. Idle symbols 
immediately follow. The job of the convergence sublayer is to 
extract the control characters or idles from the packet and then 
send a data-only packet to the MAC. Thus, the MAC never 
receives idle, JK, or TR symbols. When receiving, the CS 
reverses the process, encapsulating and encoding the data 
from the MAC for transmission by the PMD. 
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Convergence Sublayer Data Flow 
The block diagram of the convergence sublayer is shown in 
Figure 2. The receive state machine generates receiveMAC data 
and receiveError for the MAC based on the receivePMD data 
input from the media. The transmit state machine accepts 
transmitMAC and transmitEnable from the MAC and 
generates the transmitPMD data to the physical layer. The 
collisionDetect function is generated by the transmit state 
machine, based on transmitEnable and the receive state 
machine's receiving signal. 

The Carrier Sense function asserts the carriersense signal when 
the convergence sublayer is either transmitting or receiving, 
based upon the two corresponding internal signals generated 
by the Transmit and Receive functions. The Link Monitor 
function generates 1inkTestFail based on the PMDs 
signalDetect. LinkTestFail is an internal signal unused by the 
MAC and can optionally be used by your network 
management entity. 

Transmitted data, shown as the transmitMAC signal in Figure 
3, indicates that MAC data is available and is registered in the 
convergence sublayer logic. Groups of 4 data bits in the 
transmit bit'stream are converted to 5-bit code groups by 4B5B 
encoding prior to transmission on the 125 Mbit/s PMD. Note 
that TxDATA, TxSYM, and TxBIT are all different views of the 
same data, but at different data rates. 
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Figure 3. Convergence Sublayer Functional Block Diagram 

MAC (1 00 MbiVs) 

4 
// 

// 

transmitMAC 
// 

transmit Enable 

1 CONVERGENCE 
7 + sub-layer (CS) 

L 

collisionDetect A carriersense A receiveMAC Iq 

Transmit 
Circuits 

// 

(receiveError) 

* 
transmitting 

// 

// 

carrier Sense/ 
Link Monitor 

Circuits 

! 1 ' '  A 
// 

Receive 
Circuits 

h 
receiving 

b 

IinkTestFail 

125 MHz clock 

transmitPMD / 

PMD (125 MbiVs) 

7 
// 

O 

/ 

SignalDetect 125 MHz 
clock 



Using FPGAs to Implement a IOOBase-X Convergence Sublayer 

Using FPGAs to Implement a 
I OOBase-X Convergence Sublayer 

As will be seen in the following sections, the 100Base-X 
convergence sublayer can be implemented as eight functional 
blocks, each of which forms the subject of a separate 
application discussion. These are listed under the three main 
headings: the transmit function, the receive function, and the 
carrier-sense and link-monitor circuits. 

Convergence Sublayer Transmit Function 
The design of the transmit function shows some common 
design techniques used in high-speed FPGA applications. The 
main function of this block is to provide the requested symbol 
data to the PMD at the 125 Mbit/s serial rate. This requires the 
4-bit MAC data words to be 4B5B encoded and then shifted out 
using the 125 Mhz clock. In addition, the serial data stream 
needs to be framed using the leading /J/K/ symbol pair and 
trailing /T/R/  symbol pair. When data is not transmitting, it is 
replaced by the constant transmission of idle symbols. The 
transmit function is divided into two blocks as shown in 
Figure 4: 

The Transmit State Machine 

The Data Path 
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Data Path The data path portion of the transmit block is shown in 
Figure 4. The main flow of data comes from the MAC at 
25 MHz with a 4-bit-wide data word and a control signal that 
enables transmission. When MAC data is not being 
transmitted, the convergence sublayer sends continuous idle 
(I) symbols to the PMD. When the TransmitEnable signal 
becomes active, a / J/K/ symbol pair is transmitted to indicate 
the beginning of a data packet. MAC data symbols then follow 
and are encoded into 5-bit symbols using the 4B5B encoding 
scheme shown in Table 1. The end of MAC data is indicated by 
the TransmitEnable signal going inactive and a /T/R/ symbol 
pair is inserted at the end of the data packet. Finally, the CS 
logic returns to transmitting idle symbols. 

Table I .  4B5B Symbol Coding 

5-bit Code Group 4-Bit-Binary 
Symbol (in Convergence Code Group Interpretation/Function 

sublayer) (in MAC) 

0 11110 0000 Data character: OH 

1 01001 0001 Data character: 1 H 

2 I0100 001 0 Data character: 2H 

3 I0101 001 1 Data character: 3H 

4 01010 01 00 Data character: 4H 

5 01011 0101 Data character: 5H 

6 01110 0110 Data character: 6H 

7 01111 0111 Data character: 7H 

8 1 001 0 1000 Data character: 8H 

9 10011 1001 Data character: 9H 

A I0110 101 0 Data character: AH 

B I0111 101 1 Data character: BH 

C 11010 1100 Data character: CH 
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Table 1. 4B5B Symbol Coding (Continued) 

5-bit Code Group 4-Bit-Binary 
Symbol (in Convergence Code Group 

sublayer) (in MAC) 

D 11011 1101 Data character: DH 

E 11100 1110 Data character: EH 

F 11101 1111 Data character: FH 

I 11111 -- Idle character transmitted between packets 

J 1 1000 -- First control character in start-of-packet delimiter 

K 1 0001 -- Second control character in start-of-packet delimiter 

T 01 101 -- First control character in end-of-packet delimiter 

R 001 11 -- Second control character in end-of-packet delimiter 

V 00000 -- Invalid character 

V 00001 -- Invalid character 

V 0001 0 -- Invalid character 

V 0001 1 -- Invalid character 

V 001 00 -- Invalid character 

V 001 01 -- Invalid character 

V 001 10 -- Invalid character 

V 01000 -- Invalid character 

V 01100 -- Invalid character 

V 10000 -- Invalid character 

V 11001 -- Invalid character 
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The implementation of the described functions involves 
selecting six different symbol sources for PMD data: the I 
(idle), J, K, T, and R symbols and the 4B5B encoded MAC data. 
In addition, a TestData input can be used to provide raw 
unencoded data to the PMD for use in diagnostics and testing. 
This selection is accomplished via the multiplexer in front of 
the output shift register. One multiplexer selects from the I, J 
and K symbols or from another multiplexer output. The other 
multiplexer selects from the T and R symbols and encoded the 
MAC data. Note the additional path around the encoder, 
which allows raw (unencoded) data to be provided to the 
PMD. This is used for system test and diagnostics and is the 
only way to inject known errors into the system, simulating 
collision remnants and exercising the boundary conditions of 
the standard. 

The Actel logic implements multiplexers directly in a single 
logic module so, by inspection, the path through the 
multiplexer tree requires only two module delays and can 
easily meet the 25 Mhz performance requirement. The 4B5B 
encode block also requires only two logic levelsand can be 
designed via schematics or via equations. The equations can be 
automatically compiled using Actel's ACTMap tool and then 
incorporated into the schematic. 
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4858 Encoder 
Symbol encoding of the 4-bit data words transmitted from the 
MAC into the 5-bit coded groups required by the convergence 
sub-layer and the PHY layer employs a modified version of the 
coding used in FDDI-based systems. The differences from 
FDDI are that the symbols S, Q, and H are not used and that R 
is now used as part of the /T/R/ end-of-packet delimiter 
character group. 

Table 1 lists all 32 5-bit data- and special-symbol codes that the 
PMD can send to the convergence sublayer. The 16 data 
characters--0 through F (hex)-are shown in Table 1, both as 
5-bit code groups and as their 4-bit binary equivalents, as sent 
by the CS to the MAC. The idle character I and the control 
characters J, K, T, and R are shown in Table 1 in 5-bit form only, 
because they are not used in the MAC. The same applies to the 
remaining 11 possible 5-bit combinations that might be 
received on the media, all of which have no meaning to the 
decoder and hence are treated as invalid. For simplicity, each of 
the 11 invalid symbols is designated as V. 

Encoding of 4-bit data words into 5-bit symbols can be 
accomplished in a few simple logic equations, as shown in the 
PALASM entry format shown in Figure 5. 

The above equations translate each bit in sequence. Bits DO-D3 
are the 4-bit data word input to the decoder, and BO-B4 define 
the 5-bit output symbols from the decoder. Thus, in the first 
equation, bit DO is always the same as the bit BO, as can be seen 
by inspection of Table 1. The decoding equations for the 
remaining output bits (bits B4 through B1) are derived in a 
comparable fashion. 
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;Encoder for 4B to 5B 
;Used in 100 Mbit Ethernet application 
CHIP 4b5b generic 
clk rst d3 d2 dl do q4 q3 q2 ql qO 

EQUATIONS 

q4 : =  d3 + (/d2 * dl) + (/d2 * /do) 
q3 : =  d2 + (/d3 * /dl) 
q2 : = d l  + (/d3 * /d2 * /do) 
ql : =  (/dl * /do) + (d3 :+ :  d2) + (d2 * /dl) 
q0 : = do 

q4.clkf = clk 
q3.clkf = clk 
q2.clkf = clk 
ql.clkf = clk 
q0.clkf = clk 

Figure 5. PALASM2 Description for the 4B5B Encoder 
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ACTmap VHDL Synthesis and FPGA Optimization 
These equations are then processed by ACTmap, a 
computer-aided design tool for working with the Actel families 
of FPGAs. It performs three basic functions: 

PALASM 2, VHDL to netlist translation 

Netlist-optimized mapping 

1 /0  insertion 

ACTmap reads the PALASM 2, or VHDL source file and 
translates it into either an EDIF or an ADL (Actel Design 
Language) output file or Verilog netlist. The output file that it 
generates is optimized for a specific family of Actel FPGAs 
(ACT 1, ACT 2,1200XL, or ACT 3). 

You can specify whether the design should be optimized for 
area or speed. The PALASM 2 description for the 4B5B encoder 
shown in Figure 5 was processed by ACTmap, and the 
following results where achieved: 

Area = 9 modules 

Estimated worst-case delay = 8.80 ns 

These results easily meet the 25MHz requirements of the 
transmit function and show the speed and capacity capabilities 
of the ACT3 architecture. The schematic logic implementation 
of the 4B5B encoder (see Figure 6) shows the compact nature of 
the final implementation. 
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Figure 6. Transmit Path: 4B5B Encoder FPGA Logic 
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Transmit Operation 
Transmit operational states are shown in block diagram form 
in Figure 7. 

The actions shown in Figure 7 are assumed to be 
instantaneous, although, for simplicity, some time-sequenced 
events are contained in single states. Unconditional state 
transitions are unlabeled. Conditional state transitions occur 
when explicitly shown by the accompanying condition; a state 
is repeated until some transitional condition is detected. States 
are atomic in that conditions are evaluated only at the 
completion of the state's actions. Transitions shown without 
source states, notably linkTestFai1, are evaluated at the 
completion of every state and take precedence over other 
transition conditions. 
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RESET 

I IDLE state I 
transmitting t FALSE 
collisionDetect t FALSE 

F l i n k T e s t  Fail 

I TxSYM t I I 
transmitEnable 

START state 
transmitting t TRUE 
collisionDetect t receiving 
waitNibble 
TxSYM t J 
waitNibble 
TxSYM t K 

collisionDetect t receiving 
waitNibble 

END state 
transmitting t FALSE 
collisionDetect c FALSE 
TxSY M t T 

[ TxSYM t R 1 

Figure 7. Convergence Sublayer Transmit Operation 
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Convergence Sublayer Transmit Operation 
The transmit state block diagram begins with the IDLE state. 
The transmitting and collisionDetect signals are initialized as 
FALSE and the IDLE symbol is continuously supplied to the 
PMD. Once the MAC has data to transmit, it asserts 
transmitEnable and the START state is entered. The 
transmitting signal is asserted (set to TRUE) to indicate to the 
Carrier Sense function that data is being transmitted. In 
addition, collisionDetect is set to the level of the receiving 
signal. The receiving signal comes from the Receive function; if 
it is also asserted, a collision has occurred. The waitNibble 
function synchronizes the MAC data with the PMD clock. The 
first 8-bits of the MAC preamble are replaced with the 
/J/K/ symbol pair. If transmitEnable becomes FALSE, the 
machine makes a transition back to IDLE. If transmitEnable 
stays asserted, the next state becomes TRANSMIT. During 
TRANSMIT state, collisionDetect is still set to receiving. The 
MAC data (TxDATA) is encoded using the 5B4B function, and 
encoding continues until transmitEnable is disabled. Once 
transmitEnable is deasserted, the machine makes a transition 
to the END state. In the END state, transmitting and 
collisionDetect are both FALSE. The /T/R/ symbols are 
transmitted to indicate the end of data, and the machine moves 
to the IDLE state. The assertion of 1inkTestFail (by the Link 
Monitor function) causes an immediate transition to the IDLE 
state and takes precedence over any MAC request. 



Using FPGAs to implement a IOOBase-X Convergence Sublayer 

Transmit State Machine 
The state-diagram implementation of transmit operation is 
shown in Figure 8. The state machine starts in the IDLE state 
and transmits the idle symbol (I) until transmitEnable (TE) is 
TRUE. As long as TE is TRUE, the machine proceeds through 
the J and K states, sending first the J symbol and then the K 
symbol to indicate the start of a data packet. The machine then 
transmits data until TE goes FALSE (i.e., transmit not enabled 
(/TE)), after which a T and an R are transmitted, indicating the 
end of the data packet. The state machine then returns to the 
IDLE state and waits for the next data packet. The test mode 
may be entered from the IDLE state by asserting Test mode 
(TM). In this mode, any 5-bit code symbol may be transmitted, 
thus allowing known error conditions to be injected onto the 
network. 

The logic implementation of the transmit state machine is 
shown in Figure 9. Each state is encoded into the transmit state 
machine flip-flops to allow symbol selection in the transmit 
multiplexer. (See Note on page 26.) These transitions are 
controlled by the input logic for each flip-flop and depend only 
on the TE signal and the current state. 

The resulting design employs only 11 logic modules and runs 
well in excess of the required 25 MHz speed. 
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Figure 8. Transmit State Machine Diagram 



Using FPGAs to Implement a 1 OOBase-X Convergence Sublayer 

. Y * f. 

I o m  I 
Figure 9. Transmit State Machine Schematic 
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Note This state-machine implementation differs from the 
commonly seen one-hot approach in that the states are 
encoded into four D flip-flops rather than a single 
flip-flop per state. Also, the state-machine encoding 
shown in this application is more efficient than the 
one-hot approach because the state flip-flops can drive 
the data-path multiplexer directly, eliminating the 
additional encoding logic that would be required to 
handle the one-hot state variables and to select desired 
multiplexer sources. 
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Convergence Sub-layer Receive Function 
The receive functions of the convergence sublayer are shown in 
the block diagram in Figure 10. These functions are discussed 
in the following sections. 

Shift register, sync detect, and squelch 

Clock generation 

5B4B symbol decoder 

Receive state machine 

Receive Operation 

The sequence of receive states is shown in the receive- 
operation diagram, Figure 11. The receive state machine tracks 
the received symbols to ensure that a complete packet has been 
received and indicates the current line state to the next layer of 
the protocol. The receive process (see Figure 11) involves two 
separate sets of states. The constituents in the first set-the 
IDLE, SCAN, CARRIER, and ALIGN states-are prealigned 
and operate on the raw input bits using RxBIT. The remaining 
states are aligned and operate on the input data stream as 
symbols (RxSYM). Output data, designated RxDATA, is sent 
directly to the MAC in these states. 
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Figure 10. Convergence Sublayer Receive Functions 
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IDLE state 

RxDATA t 0000 

AND 
1 1 1 1 1 1 1 1  

I + - ALIGN state (wait for JK) - 
+ RxBIT [9:0] = 1 10001 0001 

START state (replace JK) 
RxDATA t 0101 
waitQuint 
RxDATA t 0101 . 
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= DATA - 
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1 ;t waitQuint RxDATA t 
waitQuint 4B5B (RxSYM [I]) 

else 

Figure I I .  Convergence Sublayer Receive Operation 
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The RECEIVE state sequence begins with the IDLE state. The 
receiving signal and the optional receiveError signal are 
initialized to FALSE. The SCAN state is entered next and the 
waitBit function synchronizes the machine to the received data 
stream. At this point, the squelch function filters out noise 
events by not allowing a transition to the CARRIER state 
unless two nonconsecutive zeros are detected. Because 
carriersense is used by the MAC for deferral purposes, it must 
be asserted on the detection of any received signal (i.e., 
received energy, or non-IDLE input) whether or not it's an 
actual packet. Since carriersense is also used to detect 
collisions, it's important to avoid triggering on noise, 
specifically a single-bit event. If CARRIER is entered, RxDATA 
is initialized to all zeros (0000) and receiving is set to true. 

The system enters the ALIGN state next. In ALIGN, the start of 
packet symbols / J /K/  is searched for. If at least two idle 
symbols (1111111111) are found instead, no start of packet has 
been detected and the machine moves to the IDLE state. If the 
/J/K/ symbols are successfully found, the START state is 
entered. In START, the MAC preamble data (55) is substituted 
for the received /J/K/ symbols. The waitQuint function 
assures that MAC data is not overwritten. The RECEIVE state 
is entered next. Usually, in the RECEIVE state, valid data is 
received and a transition to the DATA state is made. In the 
DATA state, receiveError is deasserted and 4B5B decoded data 
is sent to the MAC. 
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From the DATA state, the machine returns to the RECEIVE 
state. If, during the RECEIVE state, two idle symbols are 
received, the PREMATURE END state is entered, receiveError 
is asserted, and IDLE is reentered. If, in the RECEIVE state, 
invalid data is received, the DATA ERROR state is entered, 
receiveError is asserted, and RECEIVE is reentered. Invalid 
data is not transmitted to the MAC. If, in the RECEIVE state, a 
/T/R/ symbol pair is detected, the END state is entered, 
receiving is deasserted, and IDLE state is reentered. 

Shift Register, Sync Detect, and Squelch 

The shift register, sync detect, and squelch circuits (Figure 12) 
are responsible for shifting serial data at the 125 Mhz line rate 
and detecting clock synchronization symbols. Once a sync 
symbol is detected, the clock generation state machine adjusts 
the 25 Mhz symbol clock by stretching it the required number 
of 125 Mhz clocks to align it with an input symbol. Control 
symbols in the input data stream can then be captured 
correctly by the 25 Mhz clock and decoded by the 4B5B decode 
block. 

Serial data is clocked into the shift register and sync detect 
block by using the 125 Mhz clock. Sync symbols are detected as 
the data shifts. As shown in Figure 12, only a single logic level 
is required to detect each of the five important sync signals 
(J,K,T,R and I). The code groups corresponding to each of these 
symbols are shown in Table 1 on page 13. 
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Figure 12. Shifr Register, Sync Detect, and Squelch Schenzatic Diagram 
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Note The shift register generates both the true and 
complemented versions of bits 83, B4, B8, and B9. This is 
required to implement single-level decode for the I 
symbol because the ACT3 logic module implements five- 
input AND/NAND gates with at least two inverted 
inputs. The technique of providing additional registers 
with inverted outputs is common when implementing 
logic functions using fine-grained antifuse FPGAs. The 
additional registers cost little because of the fine-grained 
logic module, and they can be used where needed to 
provide additional logic signals. The abundant routing 
resources available with antifuse FPGAs also supply the 
additional routing required to create these additional 
logic signals. 

The squelch function filters out noise events from the received 
data stream. Zeros are ignored unless there are two 
noncontiguous zeros within the first 10 bits. At first glance, it 
would appear that the logic to detect two noncontiguous zeros 
in a 10-bit word should be quite extensive. However, once it is 
observed that this function is used only on a serial data stream, 
several simplifying logic reductions can be made. First, check 
the least significant bit (BO) for a zero, and then check that at 
least one of the higher-order bits (only B2 through B9, since B1 
is contiguous) is also zero. Any other combination is simply a 
shift from BO. However, the resulting logic equation for a 
squelch state (S), 

is too large to implement in a single FPGA logic level. 
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To simplify this approach, note that because data is being 
serially shifted in, higher-order terms can be precomputed and 
then combined with the critical BO signal using a single logic 
level. The logic that results can be expressed by the following 
three equations: 

These three equations are the ones actually implemented in 
FPGA form, (see Figure 12.) 

Note As shown in Figure 12, bits B1-B4 and bits B5-B8 are 
used with registers to develop the two intermediate 
terms S1 and S2. These two are then ORed with bit B1 to 
develop the final squelch function (S). This form of 
pipelined operation works well in serial data 
applications and will almost always result in faster and 
more area-efficient FPGA designs. 

Also, notice that the extra inversions on the S1 and S2 terms 
(Figure 12) are used because NOR functions with inverted 
inputs map more easily into in a single ACT3 logic module. 
Synthesis software like Actel's ACTmap Program figures this 
out automatically, allowing the designer to focus on 
architectural and functional issues instead. Thus, what initially 
looks like a difficult decoding problem can be significantly 
simplified to only three logic modules that operate easily at the 
serial data rate. 
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Clock Generation 

The clock generation state diagram and the clock generation 
schematic diagram are shown in Figures 13 and 14, 
respectively. The clock generation logic divides the 125 Mhz 
serial clock by 5 to generate the 25 Mhz symbol clock, Clock25. 
The Clock25 signal (Figure 13) is stretched when a sync symbol 
is detected, to align it with the 5-bit symbols. This is 
accomplished by a transition to the QO state when the JK signal 
(start of packet) is active. Entry into QO synchronizes the 
25 Mhz clock (Clock25, the output from states Q2 and Q3) and 
the load signal. The load signal is active every 5 clocks after 
synchronization, which captures the 5-bit symbol from the 
aligned data stream. The symbol can then be safely captured 
by the 25 Mhz clock, Clock25 in the aligned symbol register 
(ASR). The schematic implementation for this process is shown 
in Figure 14. 

JKSYM 

Load 

Figure 13. Clock Generation State Diagram 
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Figure 14. Clock Generation State Machine Schematic 
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Note Each state in the machine usesa single register. This one- 
hot (i.e., one register at a time) type of state machine 
design uses the register-intensive nature of fine-grained, 
antifuse-based FPGAs to reduce the logic complexity 
required to determine next-state transitions. In 
traditional encoded designs every state bit is needed to 
determine which state the machine is in. This can make 
for large transition terms in complex state machines. 
FPGAs, on the other hand, can use the additional register 
available to reduce the logic complexity, because only a 
single register output is required to determine the state of 
the machine. Thus, the FPGA's narrow, high-speed logic 
module can be used to generate the transition terms 
efficiently. In fact, on closer examination, the 
implementation of the state machine maps very closely to 
the state diagram. Transitions from one state to another 
result in a connection from the starting-states register to 
the entered-states register. Logic complexity can easily be 
estimated directly from the state diagram. Because only a 
single logic module is required to implement even the 
most complex transition, the entire machine runs easily 
at the 125 Mhz clock rate. 

5848 Symbol Decoder 

Once a symbol has been aligned, the data must be extracted by 
converting the 5-bit input from the PHY into a 4-bit data word 
that is sent to the MAC. The logic diagram for this decoder is 
shown in Figure 15. Symbol conversion is done in accordance 
with the 4B5B decode table, Table 1. Implementation of the 
decoder in the ACT3 family is automatically generated from 
the logic equations developed from the encoding table by 
using the ACTmap tool. As shown in Figure 15, the full decode 
requires only 24 modules and only two levels of logic, easily 
meeting the speed required for the 25 Mhz clock. 



Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard 

i: N2 sLq I N  - C L K Z 5  DFCIS D3 

N4 

CLR )-- 

CLK125 

CLR 

Figure 15. 5B4B Decoder Schematic Diagram 



Using FPGAs to Implement a IOOBase-X Convergence Sublayer 

Receive State Machine Diagram 

The RECEIVE state diagram is shown in Figure 16. The 
machine begins in the START state and waits for the reception 
of a JK symbol pair. The RECEIVE state is entered upon the 
reception of this pair and exited only under one or more of the 
following conditions: 

Reception of a TR symbol pair (end of data packet) 

Reception of an idle (I) symbol (premature packet end) 

Reception of an invalid symbol (error condition) 

Note that if an invalid symbol is received, the ERROR state is 
entered to capture the event. This state is cleared only by 
resetting the state machine. 

START U Y  
RECEIVE 

ERROR 

v 

Figure 16. Receive State Machine Diagram 
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Receive State Machine Logic 

As shown in Figure 17, the schematic implementation of the 
RECEIVE state machine requires only 4 logic modules and two 
levels of logic. It easily meets the 25 Mhz clock rate required for 
this portion of the design. 
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Figure 17. Receive State Machine Schematic Diagram 
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Conclusion 

Carrier Sense and Link Monitor Circuits 
The carrier sense and link monitor circuits combine outputs 
from the transmit, receive, and PMD blocks to develop the 
receiveError, carriersense, and collisionDetect signals. The 
logic for implementing this process is shown in Figure 18. 

Figure 18. Carrier Sense and Link Monitor FPGA Logic Schematic 

Conclusion 
This application note has described the complete design of a 
100Base-X convergence sublayer. Each building block has been 
fully tested and documented and is available on disk to those 
contemplating similar or related applications. 
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Designing High-Speed ATM Switch Fabrics 
by Using Actel FPGAs 

The recent upsurge of interest in Asynchronous Transfer Mode 
(ATM) is based on the recognition that it represents a new level 
of both speed and simplification in telecommunication 
networks. The most significant characteristic of ATM is that it 
requires minimum cell processing in network nodes and in 
links such as repeaters, bridges, and routers. This means that 
ATM allows systems to operate at rates much higher than 
current packet-switching systems allow. This improved 
performance is due to higher media quality and to ATM 
operation in a connection-oriented mode that guarantees 
minimum packet loss. This low packet loss is the result of not 
granting entrance to the network until completion of a setup 
phase that allocates all necessary network resources. 

To reduce the size of the internal buffers in switching nodes, 
and thus to reduce the queuing delays in these buffers, the 
information field length in ATM packets is kept relatively 
small. As a result, as packet size goes down, the speed 
requirement for each switching node on the network goes up. 
In general, to keep packet loss to a minimum, the throughput 
of ATM switching nodes must be in the 1-gigabit-per-second 
range. 

This application note describes how to design typical 
high-speed switch fabrics that route ATM packets on 
broadband networks. Switch fabric is a term used to denote a 
large group of basic switching building blocks connected in a 
specific topology. The design, analysis, and implementation of 
these building blocks will be described. 
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ATM Switching Applications 
One of the main tasks of an ATM switching node is to transport 
ATM cells at high speed from its input ports to its destination 
output ports. This task is performed by the switch fabric. The 
switch fabric establishes a connection between an arbitrary 
pair of input and output ports. Switch fabrics usually consist of 
identical basic units called switching elements. The switching 
elements are interconnected in a specific topology to create the 
switch fabric. 

The Actel ACT 3 family of FPGAs, with their high-speed 
multiplexer-based architectures, are, as will be seen in this 
application note, an excellent fit for applications, such as ATM 
switching, that stress the heavy use of multiplexing. This 
application note will describe in detail the designs of two 
typical high-speed ATM switches: 

A pipelined 16:16 switch fabric 

A 16:16 multipath interconnect (MIN) switch fabric 
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Piplined 16: 16 FPGA Switch Fabric 

One of the simpler FPGA approaches to ATM switch fabric 
design is shown by the straightforward 16:16 multiplexing 
scheme in Figure 19. This switch fabric design is known as a 
single-path network, because the same path is always used from 
any given input to a given output. In this example, the switch 
fabric has 16 input ports and 16 output ports. To achieve 
connectability, it employs 16 16:l multiplexers called FFMX16's 
(Figure 20). Each of the 16 FFMX16s uses five Actel DFM6A 
basic 4:l multiplexed flip-flops connected in two pipelined 
stages. 

Each DFM6A (Figure 21) is a 4:l multiplexer driving a flip-flop 
and occupies a single Actel ACT 3 sequential logic module. 
This multiplexed flip-flop introduces only one level of logic 
delay in the design. In this implementation, once each of the 
two stages of the 16:l multiplexer is full, the pipeline outputs 
data on every subsequent clock cycle. Thus, these 16:l 
multiplexers are effectively implemented in one logic level, 
providing improved throughput. 
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Figure 19. 16:16 Basic Multiplexer Switch Fabric 
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Figure 20. Two-Stage Pipelined 16:l Multiplexer (FFMX16) 
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Figure 21. Multiplexed Flip-Flops DFM6A 

Switch Fabric Driving Circuit 

The driving circuit for each of the FFMX16s in the 16:16 switch 
fabric is shown in Figure 22. As shown in the figure, selecting 
data for the output of each FFMX16 requires 64 signals. This 
number is based on the need for four switch-select inputs (SO, 
S1, S2, and S3) for each of the FFMX16s. Switch-select signals 
SO and S1 operate with the first stage of each multiplexer, and 
select signals S2 and S3 operate with the second stages. A drive 
signal is received as a serial bit stream (SWSEL) that is 
converted to parallel form by a 64-bit serial-to-parallel shift 
register (SIP064). Input data to the switch is received on the 
lines D[15:0]. Notice that the FFMX16 shown in Figure 22 
represents 16 FFMX16s, so the inputs are 16 bits wide. 
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Figure 22. Top Level View of the 16:16 Switch Fabric Design 

It takes two clock cycles to fill the FFMX16 pipeline, after 
which data is present on the OUTP[15:0] bus at each clock 
cycle. The 64-bit data selection word S[63:0] from the shift 
register is divided into four groups of 16 bits each, which are 
used to select the appropriate routing through the switch 
fabric. Note that there are separate clock lines for both the shift 
register and for the switch fabric so that data can be clocked to 
the output bus at a rate different from that of the shifted 
control bits. 
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Using ACTgen Macro Builder 

The 64-bit serial-to-parallel shift register (SIP064) is generated 
by the Actel macro generator, ACTgen included with Desinger 
Series software packages. With ACTgen's graphical user 
interface, you can build structured macros (counters, adders, 
etc.) by simply clicking on a few menu choices. The ACTgen 
Macro Builder then creates functions that effectively use the 
Actel architecture. Each macro is developed with the goal of 
limiting module count, maximizing performance, and 
restricting loading to acceptable levels. 

In this design, the SIP064 is generated by simply choosing the 
desired parameters from ACTgen's graphical user interface 
(64-bits, serial-to-parallel, active-low clear, active-high shift 
enable, and positive-edge triggered clock). The created shift 
register is then instantiated in the design with no need for 
simulation. The ACTgen macros are already tested to 
guarantee correct functionality. 

Note In the N:N multiplexed structure shown here, any given 
input may be broadcast to all outputs simultaneously. 
Also, an advantage of this approach is that after only two 
clock cycles, the pipeline is full and ready to output data. 
A disadvantage of this scheme is that it allows only one 
possible path, and no alternative paths, between each 
input and output. To implement a multiple-path 
capability, multiples of this switch fabric can be cascaded 
together. However a better solution is the MIN switch 
fabric. 
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16: 16 Multipath Interconnect (Min) Switch Fabric 

The primary advantage of a multipath interconnect network 
(MIN) is that it permits the creation of alternative paths 
between a given input and a given output in order to avoid 
possible packet collisions. One implementation of a MIN 
switch is the two-section Banyan network shown in Figure 23. 
This network consists of four stages that drive a second group 
of four. The second group is made up of the first four stages 
with a reversed topology-it is the mirror image of the first. 
Adding this second half produces a complete MIN switch 
fabric in a minimum number of stages. 

The first four stages (see Figure 23) enable any output to be 
reached from any input via one specific path. This is the 
standard Banyan configuration. The second four stages use a 
reversed Banyan topology. Together, the two sections provide 
the multiplicity of paths required for a MIN switch fabric. That 
is, in an N: N MIN switch fabric, N internal paths are available 
to reach any output from an arbitrary input. 

Each basic switching element used in this switch fabric is a 2:2 
switch. (See Figure 24.) Depending on the value of switch line 
SW, the data will be either passed or crossed between the input 
and output lines. Figure 25 shows the implementation of the 
basic switching element using Actel DFMElA ACT 3 
multiplexed flip-flops. As shown in the figure, two multiplexed 
flip-flops are required to implement the switching element. 
The truth table for the basic switching element shown is given 
in Table 2. 



Designing High-Speed ATM Switch Fabrics by Using Actel FPGAs 

163 6 Banvan network 16:16 Reversed Banyan network 

Legend 

# = 2:2 basic switching element 

Figure 23. 16 X 16 Mulltipath Interconnect Network (MIN) Switch Fabric 
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2:2 Mux 

Figure 24. Possible Signal Paths in a 2:2 Basic Switching 
Element 
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Figure 25. 2:2 Basic Switching Element SWCELL 



Designing High-Speed ATM Switch Fabrics b y  Using Actel FPGAs 

Notes: =Triggered on positive edge of clock 
X = Don't care 
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Table 2. Truth Table for 2:2 Basic Switching Element SWCELL 
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Assuming an N: N MIN switch fabric, the number of stages in 
the network is 210g2N. If N = 16 (as in the present case), the 
MIN switch fabric is implemented in eight stages. Thus, a 16:16 
MIN can be constructed of eight stages, with each stage 
consisting of eight 2:2 basic switching elements. 

Switch Fabric Driving Circuit 

The driving circuit for the MIN network is similar to the one 
used for the multiplexer-based switch fabric described in the 
previous section. As shown in Figure 26, the switching 
elements (SWCELL) are connected to each other to implement 
the topology shown in Figure 23. The SW lines of the switching 
elements are driven by the outputs (S[63:0]) of a 64-bit shift 
register. The S[63:0] signals are received as a serial bit stream 
(SWSEL) and are converted to parallel form by a 64-bit serial- 
to-parallel shift register (SIP064). Input data to the switch is 
received on the lines IN[15:0] and is clocked to the outputs 
once the SWCELLs are enabled. 

It takes eight clock cycles to fill the switch fabric pipeline, after 
which data is present on the OUTP[15:0] bus at each clock 
cycle.The 64 bits of data selection word (S63:SO) from the shift 
register are used to select the appropriate routing through the 
switch fabric. Note that there are separate clock lines for the 
shift register and for the switch fabric so that data can be 
clocked to the output bus at a rate different from that of the 
shifted control bits S[63:0]. 
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Figure 26. Top-Level View of the MIN Switch Fabric Design 
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Note The complete multipath interconnect switch fabric is 
implemented by using 128 (8 x 8 x 2) multiplexed 
flip-flops of the type DFMEIA. The straight multiplexed 
switch structure discussed in the previous section 
requires 80 (5 x 16) DFM6A multiplexed flip-flops. 
However, this size differential does not translate for 
larger values of N (where N is the number of input and 
output ports). As N gets larger, the number of modules 
required to implement the MIN network does not 
increase as rapidly as it does for the simple mux- 
structured network. Also, notice that the multiplexed 
flip-flop used in the MIN network is a 2:l type, whereas 
the straight mux switch fabric requires a 4:l type. The 2:l 
multiplexed flip-flop offers the advantage that, because 
of its lower fanin, it is easier to route on the Actel 
software. 
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Timing Analysis 
The MIN switch fabric discussed here can be implemented in 
most Actel ACT 3 devices, such as the A1425A1 the A1440A, 
A1460, and the A14100A. The timing analysis given in this 
section was obtained from the A1440A-2. 

The MIN switch fabric can be operated as fast as the slowest 
switching element can switch its data from input to output. 
The basic switching element has a 5.7 ns clock-to q (input-to- 
output) delay, along with 0.7 ns of setup time. Hence, the 
maximum frequency of the switch fabric clock is 156 MHz. In a 
16:16 switch, this provides a maximum throughput of 2.5 
gigabits per second. Note that it takes eight clock cycles for 
data to move from the switch fabric input to its output (about 
51.2 ns). However, as in all such pipelines, once all stages of the 
network are filled up, data is output at every subsequent clock 
cycle. 

Conclusion 
The basic concept behind switch fabrics is multiplexing data 
from input ports to outputs. The multiplexer-based 
architecture of Actel FPGAs fits this requirement. High-speed 
switching networks of almost any topology can be 
implemented efficiently using the multiplexed flip-flops in the 
Actel library. Each of these flip-flops is mapped to only one 
sequential module within the FPGA to take maximum 
advantage of the die area within the chip. 
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Generating/Checking CRC for IEEE 802.3 
(LAN interface) 

The Carrier Sense Multiple Access with Collision Detection 
(CSIvlA/CD) media access method is the means by which two 
or more stations share a common bus transmission medium. 
IEEE 802.3 is a standard for local area networks (LAN) 
employing CSMA/CD as the access method. 

IEEE 802.3 consists of submodules such as Receiver, 
Transmitter, Clock Synchronization, and CRC, as shown in 
Figure 27. 

The focus of this application note is the design of a Cyclic 
Redundancy Check (CRC) submodule compatible with the 
IEEE 802.3 protocol. This includes generating the CRC code 
before transmission and checking the coherency of the data at 
receiver time. 

IEEE 802.3 Protocol 

Clock Synchronization 

Figure 27. IEEE 802.3 Protocol Submodules 
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Cyclic Redundancy Check 
CRC is a way to detect small changes in blocks of data. 
Although a few errors in a text file may be acceptable, when 
transmitting a computer program, an error of even 1 bit is 
sufficient to make a program faulty. An error-correcting 
protocol triggered by a CRC error detector can provide 
protection. The CRC code calculation usually is different from 
one protocol to another. This application note focuses on the 
LAN 802.3 protocol algorithm and includes a design 
implementation and the issues involved in this 
implementation. 

IEEE 802.3 Frame Structure 
A Media Access Control (MAC) frame packet is partitioned 
into six major sections: Preamble, Destination, Source Address, 
Byte Count, Data Field, and Frame Check Sequence (FCS). 
Table 3 demonstrates the LAN frame structure. 

Table 3. LAN Frame Structure 

Preamble 8 Bytes 

Destination Address 6 Bytes 

Source Address 6 Bytes 

Byte Count 2 Bytes 

Data Field 46 to 1500 Bytes 

Frame Check Sequence (FCS) 4 Bytes 



I€€€ 802.3 Frame Structure 

The Preamble field is used for synchronization between the 
receiver and transmitter clock. This field has seven sequences 
of 101010 followed by one byte of 10101011. This is the last byte 
indicating the start of the frame-start Frame Delimiter (SFD) 
byte. 

Each MAC frame has two address fields: the destination 
address field and the source address field. The destination field 
specifies the station or stations for which the frame was 
intended. The source address field indicates the station 
sending the frame. 

The Byte Count field is a 2-byte field; its value indicates the 
number of logical link control (LLC) data bytes in the data 
field. 

The data field contains a sequence of n bytes that may 
arbitrarily appear in the data field. The maximum size of this 
field is (2 x (address size) + 48)/8 bytes, and the minimum 
frame data is ((8 x n) + (2 x address size) + 48) bits. 

The FCS field contains CRC code. This field is 4 bytes long and 
is used to check the integrity of the transmitted data on the 
LAN protocol. 
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CRC Module Design 
The first task in designing a CRC module is to find and 
understand the linear algebra that represents the CRC code 
calculation. The CRC algorithm operates on a block of data 
transmitted serially as a unit. This block of data can be looked 
at as a large numerical value. The CRC algorithm divides this 
large number by a magic number-the CRC polynomial. This 
operation will leave the remainder with a unique CRC code. 
After CRC code calculations, the resulting CRC number is 
usually stored along with the data. The following describes 
this linear division for a 32-bit 802.3 LAN controller: 

When data is received from storage, the unique CRC code is 
received along with the data. The CRC design algorithm can be 
repeated, and the remaining results should be the magic CRC 
number. This number for LAN 802.3 protocol is DEBB20E3 hex, 
and since the number is inverted before transmission on the 
line, it is C704DD7B hex. When checking for validity of data, 
any other remainder in the CRC register is an indication of 
error. 

The CRC design interface for IEEE 802.3 is completely 
synchronous and register intensive. This makes it ideal for 
Actel architecture. CRC design consists of many add and shift 
operations in every clock cycle. This makes it an ideal choice 
for behavioral design entry methodology. Using a schematic 
design tool is not advisable, since design is error prone and 
schematics are hard to change. 
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Design lmplemen tation 
The following is the crc-design file implemented in ACTmap 
VHDL with some predefined sequential procedures that can be 
used to define this design. The behavioral code is then 
processed by Actel's VHDL synthesis and optimization tool, 
ACTmap. ACTmap is a computer-aided design tool for 
working with the Actel families of FPGAs. It performs three 
basic functions: 

PALASM2, VHDL to netlist translation 

Netlist Optimized mapping 

1 / 0  insertion 

ACTmap reads the PALASMZ, or VHDL source file and 
translated it into either an EDIF or an ADL (Actel Design 
Language) output file or Verilog netlist. The output file that it 
generates is optimized for a specific family of Actel FPGAs 
(ACT 1, ACT 2,1200XL, or ACT 3). 

LAN 802.3 also includes the Receiver and Transmitter 
submodules. Both Receiver and Transmitter submodules are 
counter intensive. The Actel ACTgen macro generator can 
create structural macros such as counters that are optimal for 
Actel devices. These structural blocks can easily be instantiated 
through Actel VHDL. Even though receiver and transmitter 
designs are not the focus of this application note, it is 
informative to know that the ACTgen module generator can 
easily be linked to the Actel VHDL entry tool. 
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This application note is focused on generating the correct CRC 
code at the transmission time and checking for validation of 
frame data at receiving time. A functional block diagram of the 
CRC design is shown in Figure 28. 
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Figure 28. Functional Block Diagram 
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VHDL Code Description 
The following is the ACTmap VHDL code representing this design: 

--LIBRARY ieee; used for simulation 
--USE ieee.std-logic-ll64.ALL; used for VHDL simulators 

entity crc-data-in is 

--decides which data should be 
-- sent to crc-register entity. 

port (rcv-active,trm-active: in bit; 
rcv-bit-in,trm-bit-out,crc-reg-b, trm-crc-start: in bit; 
crc-data-in: out bit); 

end crc-data-in; 

architecture archi of crc-data-in is 
signal mux-data-out: bit; 
begin 

mux-data-out<= trm-bit-out when (trm-active = '1') else 
rcv-bit-in when (rcv-active = '1') else 
qo'; 

--This will feed bit 31 of crc-register back in, with the new data. 
--It also disables the crc calculation when transmitting crc code. 

crc-data-in <= not(trm-crc-start) and (crc-reg-b xor mux-data-out ) ;  

end archi; 

entity crc-register is 
--This is the main module that applies the crc algorithm to data. 

port( clk,system-reset,crc-data-in: in bit; 
rcv-active,trm-active: in bit; 
crc-reg :out bit-vector(31 downto 0); 
crc-reg-b :out bit) ; 

end crc-register; 

architecture crcreg of crc-register is 
signal nextreg, temp :bit_vector(31 downto 0 ) ;  
signal reset-crc :bit; 

begin 

reset-crc <= '1' when system-reset = '1' else 
'1' when ( (rcv-active = '0') and (trm-active = '0')) else 
'0'; 
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crc-reg <= nextreg ; 
DFFC-V(temp, reset-crc, clk, nextreg); 
temp <= (nextreg(30 downto 26) & 

(nextreg (25) xor crc-data-in) & 
(nextreg (24 downto 23) ) & 
(nextreg (22) xor crc-data-in) & 
(nextreg (21) xor crc-data-in) & 
(nextreg(20 downto 16)) & 
(nextreg(l5) xor crc-data-in) & 
(nextreg(l4 downto 12) ) & 
(nextreg(l1) xor crc-data-in) & 
(nextreg(l0) xor crc-data-in) & 
(nextreg(9) xor crc-data-in) & 
nextreg(8) & 
(nextreg (7 ) xor crc-data-in) & 
(nextreg(6) xor crc-data-in) & 
nextreg(5) & 
(nextreg (41 xor crc-data-in) & 
(nextreg(3) xor crc-data-in) & 
nextreg(2) & 
(nextreg(1) xor crc-data-in) & 
(nextreg (0) xor crc-data-in) & 
crc-data-in) ; 
crc-reg-b <= nextreg(31); 

end crcreg; 

entity crc-data-out is 
-- This is the crc-data-out module that checks for errors. 

port (rcv-active,trm-active: in bit; 
trm-data, crc-reg-b: in bit; 
trm-crc-start,rcv-crc-chk: in bit; 
crc-reg: in bit-vector(31 downto 0); 
trm~bit~out,rcv~crc~error: out bit); 

end crc-data-out; 

architecture archi of crc-data-out is 
signal crc-constant : bit-vector(31 downto 0); 

begin 

tmbit-out <= (not crc-reg-b) when ((t-active = '1') and (trm-crc-start = '1')) else 
trm-data when (tm-active = '1') else 
, o n ;  

-- checking for constant magic number 
crc-constant <= x"c704dd7bn; 
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rcv-crc-error <= '0' when (rcv-active = ' 0 ' )  else 
'0' when ((crc-reg = crc-constant) and (rcv-crc-chk = '1')) else 
'1' when (rcv-crc-chk = '1') else 
'0,; 

end archi; 

-- This is the top-level module that binds all entities together. 
entity enetcrc is 

port(clock,t~crc~start,r~bit~in,t~bit~out :in bit; 
s~reset,r~active,t~active,r~crc~chk :in bit; 
final-bit-out,r-crc-error :out bit) ; 

end enetcrc; 

architecture structure of crc-design is 

component crc-data-in 
port (rcv-active,trm-active : in bit; 

rcv-bit-in,trm-bit-out,crc-reg-b,trm-crc-start : in bit; 
crc-data-in : out bit); 

end component; 

component crc-register 
port (clk,system-reset,crc-data-in: in bit; 

rcv-active,trm-active: in bit; 
crc-reg :out bit-vector(31 downto 0); 
crc-reg-b :out bit); 

end component; 
component crc-data-out 

port (rcv-active,trm-active: in bit; 
trm-data, crc-reg-b: in bit; 
trm-crc-start,rcv-crc-chk: in bit; 
crc-reg: in bit-vector(31 downto 0); 
trm-bit-out,rcv-crc-error: out bit); 

end component; 

for all: crc-data-out use entity work.crc-data-out(archi); 
for all: crc-data-in use entity work.crc-data-in(archi); 
for all: crc-register use entity work.crc-register(crcreg); 

signal bit31,data-in :BIT; 
signal crc32bit-reg :bit_vector(31 downto 0); 
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begin 

U1:crc-data-in port map 
(r~active,t~active,r~bit~in,t~bit~out,bit31,t~crc~start,data~in); 

U2:crc-register port map 
(clock,s~reset,data~innr~active,t~active,crc32bit~reg,bit3l); 

U3:crc-data-out port map 
(r~active,t~active,t~bit~out,bit3l,t~crc~start,r~crc~chk,crc32bit~reg, 
final-bit-out,r-crc-error); 

end structure; 

The entity crc-data-in acts as a switch between receiver and 
transmitter. The code in this module is designed to use the 
same circuit for the data receiver CRC check and the CRC code 
generator at transmission time. In this module, when t-active 
is enabled, it enables the CRC code generation. The T-bit-out 
bit will be half added (XOR) with bit 32 of the CRC register and 
will be shifted in the CRC register for CRC code generation. 
Tbit-out will also be sent on line serially. At the end of the 
Byte Count field the t-crc-start bit in the top level will be set. 
This indicates that the generated CRC code needs to be 
transmitted. The 4 bytes of the CRC code are transmitted with 
bit 31 first and bit 0 last. 
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The crc-register entity generates the CRC code at transmission 
time and applies the polynomial division on data bits at 
receiver time. In this module, the DFFC-V predefined 
procedure of ACTmap-VHDL is used. The cyclic redundancy 
check is computed at transmission time as a function of all the 
frame data fields except Preamble and FCS (CRC). The CRC 
algorithm applies modulo 2 division on data; this means it uses 
the XOR operation instead of the normal add and subtract. 
Note that bit 31 of the crc-register is folded back into the 
polynomial operation. When t-crc-start is set, the uniquely 
calculated CRC code will be shifted on line at every clock 
period. As the most significant bit is shifted out, the least 
significant bit will be replaced by 1. 

In the receiving side, all previously mentioned fields except for 
Preamble (including FCS) run through the CRC algorithm 
again. When the last CRC code is received, the CRC check flag 
will be set (r-set-chk). 

The last entity, crc-data-out, will check the number remainder 
in the crc-register for the constant magic number C704DD7B 
hex. Any other number produces an error. 

The top-level design, enetcrc, instantiates these modules and 
binds them together. 
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Synthesis and Optimization 
The VHDL code described in the previous section is 
synthesized and optimized by ACTmap, which generates a 
gate level description optimized for Actel's architecture. 
ACTmap can output the results in any of the following netlist 
formats: EDIF, Verilog, ADL, and Viewlogic. The following 
results were obtained from ACTmap targeting an ACT 3 
device. 

Figures 29 through 34 show the schematic representation of the 
netlist generated by ACTmap. 

Conclusion 
Trying to find better ways to quickly bring high performance 
products to market is not new. What is new is a design 
methodology combining the use of Field Programmable Gate 
Arrays (FPGAs) with high-level design entry in high-speed 
systems. New design flows use sophisticated synthesis tools to 
translate generic high-level design description into device 
specific netlists. Synthesis targets specific FPGA architectures 
and devices for optimum fit and performance. The Cyclic 
Redundancy Check circuit described in this application note 
takes advantage of high-level design entry capabilities of Actel 
tools. 
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Figure 29. Schematic Representation of the Top Level Design, enetcrc 
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Figure 30. Schematic Representation of the Top Level Design, enetcrc (Continued) 
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Figure 31. Schematic Representation of the Top Level Design, enetcrc (Continued) 
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Figure 32. Schematic Representation of the Top Level Design, enetcrc (Continued) 
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Figure 33. Schematic Representation of the Top Level Design, enetcrc (Continued) 
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Figure 34. Schematic Representation of the Top Level Design, enetcrc (Continued) 


